MAT0028 ~ Lesson 32

Work the following examples as you listen to the recorded lecture.

Factoring Simple Trinomials

Problem type: $x^{2}+b x+c \quad$ (Where b and c are numbers, and x is the unknown.)

Rules for signs:

Rule 1: If the $\underline{2}^{\text {nd }}$ sign is + , then both factor signs will match the $\underline{1}^{\text {st }}$ sign in the problem.

$$
x^{2}+b x+c \rightarrow(+)(+) \quad x^{2}-b x+c \rightarrow(\quad-\quad)(\quad)
$$

Rule 2: If the $\underline{2}^{\text {nd }} \operatorname{sign}$ is -, then the factor signs will be different, + and - .
$x^{2}+b x-c \rightarrow(+)\left(\quad+\quad x^{2}-b x-c \rightarrow(+)(\mathbf{~})\right.$
Rule 3: Use $2^{\text {nd }}$ operation to find out if you add or subtract factors to equal b.

Steps to remember:

1. Set the factor statement
2. Set the binomial factors with the signs
3. Factor the variable squares
4. Find all factors for " c " until one matches the factor statement
5. Place the factors in the $2^{\text {nd }}$ positions of the binomial pairs
6. FOIL to check

Example 1: $x^{2}+7 x+6$	Step 1: Factor Statement:
$1) 1$	Step 2: Set signs for the factors.
	Step 3: Factor the variable squares.
	Step 4: Factor C c = \qquad Factor Statement Work Space \qquad \qquad \qquad \qquad Look for the combination that fits the factor statement.
	Step 5: Use the "c" factors in 2nd positions of your solution.
	Step 6: FOIL to check.

Factoring Simple Trinomials, page 2

Example 2: $x^{2}-6 x+9$	Step 1: Factor Statement:
$1) 1$	Step 2: Set signs for the factors.
	Step 3: Factor the variable squares.
	Step 4: Factor C c = \qquad Factor Statement Work Space \qquad \qquad \qquad Look for the combination that fits the factor statement.
	Step 5: Use the "c" factors in 2nd positions of your solution.
	Step 6: FOIL to check.

Example 3: $x^{2}+8 x y+15 y^{2}$	Step 1: Factor Statement:
) (Step 2: Set signs for the factors.	
	Step 3: Factor the variable squares. Factor c Factor Statement Work Space $c=\ldots$
	Look for the combination that fits the factor statement.
	Step 5: Use the "c" factors in 2nd positions of your solution.
	Step 6: FOIL to check.

Factoring Simple Trinomials, page 3

Example 4: $13+14 x+x^{2}$	Step 1: Factor Statement:
$1) 1$	Step 2: Set signs for the factors.
	Step 3: Factor the variable squares.
	Step 4: Factor C c = \qquad Factor Statement Work Space \qquad \qquad \qquad \qquad Look for the combination that fits the factor statement.
	Step 5: Use the "c" factors in 2nd positions of your solution.
	Step 6: FOIL to check.

Example 5: $4 x^{2} y+4 x y-8 y$	Step 1: Factor Statement:
$1) 1$	Step 2: Set signs for the factors.
	Step 3: Factor the variable squares.
	Step 4: Factor C c = \qquad Factor Statement Work Space \qquad \qquad Look for the combination that fits the factor statement.
	Step 5: Use the "c" factors in 2nd positions of your solution.
	Step 6: FOIL to check.

