MAT0028 ~ Lesson 22

Work the following examples as you listen to the recorded lecture.

Slope Rule for Linear Equations

Slope of a linear equation is really the direction of the line. We also think of slope as the slant or steepness of a line, and it can be measured. As you have seen in earlier instruction, slope is equal to the vertical change in a line (called the rise) over the horizontal change (called the run). Therefore you may think of slope as the change in y over the change in x. Since we can define and measure slope in terms of changes in y and x, we can also calculate slope from two points on the same line. Take a close look at the following examples:

$\frac{\text { Iwo Points on a Line }}{(3,1) \text { and }(4,-2)}$	Calculations for Slope $\boldsymbol{m}=\frac{-\mathbf{2 - 1}}{\mathbf{4 - 3}}=\frac{-\mathbf{3}}{\mathbf{1}}=-\mathbf{3}$ $(-2,0)$ and $(1,5)$ $\boldsymbol{m}=\frac{\mathbf{5 - 0}}{\mathbf{1}-(-\mathbf{2})}=\frac{\mathbf{5}}{\mathbf{3}}$ $(4,3)$ and $(-1,-2)$ $\boldsymbol{m}=\frac{-\mathbf{2 - 3}}{-\mathbf{1}-\mathbf{4}}=\frac{-\mathbf{5}}{-\mathbf{5}}=\mathbf{1}$ $(0,6)$ and $(4,-2)$ $\boldsymbol{m}=\frac{\mathbf{- 2}-\mathbf{6}}{\mathbf{4 - 0}}=\frac{\mathbf{- 8}}{\mathbf{4}}=-\mathbf{2}$ \mathbf{l}

Use the Slope Rule to calculate the slope for the following lines.

$\frac{\text { Two Points on a Line }}{}$	Calculations for Slope
$(4,3)$ and $(-1,-2)$	$\boldsymbol{m}=$
$(0,6)$ and $(4,-2)$	$\boldsymbol{m}=$
$(2,-1)$ and $(3,-6)$	$\boldsymbol{m}=$
$(5,0)$ and $(-4,2)$	$\boldsymbol{m}=$

