MAT0028 ~ Lesson 18

Work the following examples as you listen to the recorded lecture.

Linear Equations in Two Variables

A linear equation in two variables represents a straight line. The equation can be written like this: Ax + By = C where A, B, and C are real numbers and A and B are **not both** zero.

Remember		
A Linear Equation in Two Variables must have:		
1. An equal sign		
2. An x term or a y term, but no other variable terms		
3. No exponents of x or y other than 1		
4. Only real numbers		

Everything else is flexible and optional. In other words, linear equations in two variables can take many shapes. Take a look at the following examples:

<u>Linear Equation</u>	<u>Values</u>	<u>Explanation</u>
<u>Examples</u>		
2x + 3y = 4	A = 2, $B = 3$, $C = 4$	The format is the same as our model.
2x = 4	A = 2, $B = 0$, $C = 4$	The equation looks different to us if one of
3y = 4		the numbers is 0. The x or y term may be
2x + 3y = 0	A = 0, $B = 3$, $C = 4$	missing because of a coefficient of 0. The
		equation still fits the model. Either A or B
	A = 2, $B = 3$, $C = 0$	can be 0, but not both.
		C can always be 0.
$-2x - \frac{1}{2}y = 0.4$	$A = -2$, $B = -\frac{1}{3}$, $C = .4$	Any of our numbers can be negative,
3 2	3	decimals, or fractions.
2x = 4 - 3y	A = 2, $B = -3$, $C = 4$	The terms can be written in any order in the
		equation.

What about equations that are **not** linear equations in two variables? Take a look at the following bad examples:

Bad Linear Equation	<u>Explanation</u>
<u>Examples</u>	
$2x^2 + 3y = 4$	The x^2 term is not allowed.
$2x = \sqrt{-3}$	$\sqrt{-3}$ is not a real number.
-2x - 3y + 5z = 4	There is a third variable term, 5z .
2n = 4 - 3n	There must be an x or y term.

Linear Equations in Two Variables, page 2

Fill in the chart below. In the first column is either a good example or a bad example of a linear equation in two variables. Circle Good or Bad in the second column to indicate which equations fit the criteria. In the third column, give the A, B, and C values for Good examples and explain why Bad examples do not fit the criteria.

Equation Examples	Good or Bad?	Why is this a Good or Bad example of a Linear Equation?
-x + 2y = 17	Good	A =, B =, C =
	Bad	Why?
2x = 4z	Good	A =, B =, C =
	Bad	Why?
$\frac{1}{2}y = 4$	Good	A =, B =, C =
	Bad	Why?
0.5y = 4 - 0.5x	Good	A =, B =, C =
	Bad	Why?