MAT0028 ~ Lesson 18

Work the following examples as you listen to the recorded lecture.

Linear Equations in Two Variables

A linear equation in two variables represents a straight line. The equation can be written like this: $A x+B y=C$ where A, B, and C are real numbers and A and B are not both zero.

> Remember....

A Linear Equation in Two Variables must have:

1. An equal sign
2. An x term or a y term, but no other variable terms
3. No exponents of x or y other than 1
4. Only real numbers

Everything else is flexible and optional. In other words, linear equations in two variables can take many shapes. Take a look at the following examples:

$\underline{\text { Linear Equation }}$		
$\underline{\text { Examples }}$	$\underline{\text { Values }}$	Explanation
$2 x+3 y=4$	$A=2, B=3, C=4$	The format is the same as our model.
$2 x=4$ $3 y=4$ $2 x+3 y=0$ $A=2, B=0, C=4$The equation looks different to us if one of the numbers is 0. The x or y term may be missing because of a coefficient of 0. The equation still fits the model. Either A or B can be 0, but not both. C can always be 0.		
$-2 x-\frac{1}{3} y=0.4$	$A=-2, B=-\frac{1}{3}, C=.4$	Any of our numbers can be negative, decimals, or fractions.
$2 x=4-3 y$	$A=2, B=-3, C=4$	The terms can be written in any order in the equation.

What about equations that are not linear equations in two variables? Take a look at the following bad examples:

Bad Linear Equation Examples	Explanation
$2 x^{2}+3 y=4$	The x^{2} term is not allowed.
$2 x=\sqrt{-3}$	$\sqrt{-3}$ is not a real number.
$-2 x-3 y+5 z=4$	There is a third variable term, $5 z$.
$2 n=4-3 n$	There must be an x or y term.

Linear Equations in Two Variables, page 2

Fill in the chart below. In the first column is either a good example or a bad example of a linear equation in two variables. Circle Good or Bad in the second column to indicate which equations fit the criteria. In the third column, give the A, B, and C values for Good examples and explain why Bad examples do not fit the criteria.

Equation Examples	Good or Bad?	Why is this a Good or Bad example of a Linear Equation?
$-x+2 y=17$	Good	$\mathrm{A}=\ldots, \quad \mathrm{B}=\ldots, \quad \mathrm{C}=$
	Bad	Why?
$2 x=4 z$	Good	$\mathrm{A}=\ldots, \quad \mathrm{B}=\ldots, \quad \mathrm{C}=$
	Bad	Why?
$\frac{1}{2} y=4$	Good	$\mathrm{A}=\ldots, \quad \mathrm{B}=\ldots, \mathrm{C}=$
	Bad	Why?
$0.5 y=4-0.5 x$	Good	$\mathrm{A}=\ldots, \mathrm{B}=\ldots, \mathrm{C}=$
	Bad	Why?

